
US Department of Education
Federal Student Aid
June 11, 2007

Architectural Models Phase I
Application Architectural Model v2
Final with Post Delivery Edits

Application Architectural Model i

Table of Contents

Table of Contents ...i

Section 1: Introduction ... 1-1

1.1 Statement of Purpose / Objectives.. 1-1
1.2 Intended Audience / Usage ... 1-1
1.3 Scope .. 1-2
1.4 Document Organization... 1-2

Section 2: Architecture Vision .. 2-1

2.1 Target State Vision.. 2-1
2.2 Architectural Principles.. 2-2
2.3 Architectural Areas .. 2-3
2.4 Key Concepts .. 2-4
2.5 Architectural Model Overview.. 2-4
2.6 Architectural Model Tiers... 2-5
2.6.1 Client Tier .. 2-5
2.6.2 Integration Tier .. 2-6
2.6.3 Business Tier... 2-6
2.6.4 Data Tier.. 2-6

Section 3: Application Architecture .. 3-1

3.1 Business Tier... 3-3
3.1.1 Service... 3-3
3.1.2 Process.. 3-5
3.1.3 Business Component .. 3-6
3.1.4 Batch Processing... 3-7
3.2 Data Tier.. 3-8
3.2.1 Data Access .. 3-8

6/11/2007 FINAL

Application Architectural Model ii

3.3 Development Tools ... 3-12
3.4 Adoption .. 3-13
3.5 Constraints .. 3-14

Section 4: Architectural Decisions.. 4-1

1. SQL-Java (SQLJ) is not a recommended technology 4-1
2. Static SQL should not be coded inside of data access components............. 4-2

Section 5: Glossary and Standards ... 5-1

Section 6: Use Cases... 6-1

6.1 Overview ... 6-1
6.2 Loan Disbursement Component.. 6-1
6.2.1 Sequence Diagram.. 6-1
6.2.2 Transaction Boundaries and Locking 6-4

Appendix A: Acronyms .. 6-1

6/11/2007 FINAL

Application Architectural Model iii

Table of Figures

Figure 2-1: Architectural Areas..2-3

Figure 2-2: Federal Student Aid Architectural Model..2-5

Figure 3-1: Federal Student Aid Architectural Model (static view)..3-1

Figure 6-1: Loan Disbursement Component (JDBC) Sequence Diagram ...6-3

Figure 6-2: Loan Disbursement Component (Hibernate) Sequence Diagram ..6-4

6/11/2007 FINAL

Application Architectural Model iv

Table of Tables

Table 3-1: Web Services Interface Key Benefits...3-4

Table 3-2: EJB Remote Interface Key Benefits ..3-4

Table 3-3: WS-BPEL Key Benefits...3-6

Table 3-4: Stateless Session Bean Key Benefits ..3-7

Table 3-5: Design Patterns Key Benefits ...3-9

Table 3-6: Data Access Technologies Key Benefits.. 3-11

Table 3-7: SQL Processing Key Benefits .. 3-12

Table 3-8: Key Development Tools .. 3-13

Table 3-9: Adoption Examples... 3-14

Table 5-1: Glossary ..5-4

Table A-1: Acronym List ...A-1

6/11/2007 FINAL

Application Architectural Model 1-1

Section 1: Introduction

This document presents an Architectural Model that documents and communicates Federal Student Aid’s
architectural vision. There are number of architecture models each covering a particular solution domain (i.e.,
architectural area). This document specifically addresses application architecture, which provides insight into
Federal Student Aid’s vision for building business applications. Future architecture model documents will cover
architectural areas such as portal and security architecture. This document also provides background on Federal
Student Aid enterprise initiatives to achieve the Target State Vision (TSV).

1.1 Statement of Purpose / Objectives

Federal Student Aid plans to initiate numerous acquisitions to implement its TSV. An architecture model is a
vehicle for Federal Student Aid to clearly communicate expectations of how solutions offered by vendors should
meet their architectural requirements and vision. The architectural model provides a framework within which
solutions will operate.

Federal Student Aid’s current technical environment is documented by a number of documents developed by
Federal Student Aid Chief Information Officer (CIO), Integration Team and their contractors over time. A
significant challenge for Federal Student Aid is to specify which one of these documents is required to support
the definition of a specific technical solution, and which documents should be included in an acquisition package.
Therefore, Federal Student Aid has decided to adopt a standard template, an architectural model that documents
Federal Student Aid’s architectural expectations. Federal Student Aid will require vendors to use this architectural
model to better understand Federal Student Aid’s technical environment, available resources, and the standards
to which they must adhere. The objective of this standardization of technical architecture documentation is to
obtain proposed solutions from vendors that are of higher quality, in compliance with Federal Student Aid
standards, and compatible with the Federal Student Aid architectural vision.

1.2 Intended Audience / Usage

This document is intended to be used by a technical audience, such as the Federal Student Aid CIO organization,
contractors actively designing /developing a solution and contractors preparing to respond to a Federal Student
Aid IT solicitation. This document defines the standards, guidelines, and constraints of Federal Student Aid’s
application architecture. Vendors will be required to take into account this architectural vision when designing
and proposing technology solutions for deployment at Federal Student Aid.

6/11/2007 FINAL

Application Architectural Model 1-2

1.3 Scope

Each architectural model is intended to cover relevant architectural elements for specific architectural areas as
part of an enterprise-wide solution. Separate documents will be produced for each architectural area and
together the series of documents will form a complete reference architecture. Federal Student Aid is currently
working on standardizing its programming model and development platform. This document describes the
relevant architectural elements of Federal Student Aid’s proposed programming model and development
platform for building its application architecture.

1.4 Document Organization

This document is organized into the following sections:

• Section 1: Introduction - Provides the background and purpose, and scope definition made in the
development of Federal Student Aid’s architectural model;

• Section 2: Enterprise Vision - Provides background information on Federal Student Aid’s TSV,

establishes the enterprise-level architectural principles followed in the development of the model and
introduces the architectural model at a high level;

• Section 3: Application Architecture - Presents the application architectural model along with detailed

descriptions of the architectural tiers and key technologies leveraged within each tier;

• Section 4: Architectural Decisions - Documents key architectural decisions made by the Federal
Student Aid’s application architecture team. These decisions are presented with associated rationale,
alternatives considered and implications of each decision.

• Section 5: Glossary and Standards - Identifies and defines key standards and technologies described

within the application architecture model.

• Section 6: Use Cases - Presents the dynamic view of the application architecture model by walking
through a generic task that the application architecture will support.

• Appendix A: Acronyms - Defines all acronyms used throughout the application architectural model.

6/11/2007 FINAL

Application Architectural Model
 2-1

6/11/2007 FINAL

Section 2: Architecture Vision

Architectural models are intended to facilitate successful solutions for building the target state. Architectural
models accomplish this by providing a reference that both Federal Student Aid and the solution provider can use
as a baseline for communication and architecting of a solution. This section begins with a discussion about the
Federal Student Aid TSV which will provide context for the architecture vision. The remainder of this section
describes the architecture vision.

2.1 Target State Vision

Federal Student Aid, an office of the U.S. Department of Education, administers Federal student financial
assistance programs authorized under Title IV of the Higher Education Act (HEA) of 1965, as amended. Its
mission is to ensure that all eligible individuals can benefit from federally funded or federally guaranteed financial
assistance for education beyond high school. Federal Student Aid accomplished this mission by offering
numerous assistance programs that are funded by public and private sources. There are approximately 13 million
students that apply for financial aid each year.

Federal Student Aid has embarked on a major business and systems reengineering effort to create an integrated
suite of solutions under the Performance Based Organization (PBO) legislation of 1998. Incorporated within
this effort, a TSV has been defined to describe how Federal Student Aid should operate and administer Title IV
programs.

To achieve the TSV, Federal Student Aid intends to hire system integrators to help build the target technical
environment. A combination of several architectural models will facilitate offerors’ understanding of Federal
Student Aid’s overall architectural vision.

The TSV is based upon the following business goals: 1) delivering student aid in an efficient and cost-effective
manner; 2) providing the best access to customers; and 3) maintaining appropriate levels of oversight. Federal
Student Aid has identified the following four objectives in order to achieve these goals:

• Integrate and reengineer business processes to improve operational efficiency and effectiveness,
and provide a better experience for those who interact with Federal Student Aid.

Federal Student Aid will enhance customers’ experience by improving the efficiency and effectiveness of
business processes. Target state business processes are logically grouped so that they can leverage
common process steps and underlying data. Complex business processes, such as those involving the
origination and servicing of aid, will be streamlined, and customers will have the ability to view and
manage their aid portfolio from a single access point.

• Improve data quality and integrity to provide enhanced analytics and reporting capabilities.

Federal Student Aid has established both the Enterprise Data Management initiative and the
Information Framework (IF) initiative to provide the data services needed to support the target state

Application Architectural Model
 2-2

6/11/2007 FINAL

business processes. The Enterprise Data Management initiative will establish the policies, processes and
procedures to ensure that Federal Student Aid focuses on data as an asset. The IF will coordinate the
cleansing, movement, and integrity of data to provide consistent enterprise-wide data to all customers
and business stakeholders, while minimizing data redundancy and improving data integrity. The IF
integrates organizational data (schools, lenders, servicers, and guaranty agencies), person data (applicants,
students, and borrowers) and aid data (loans and grants), and provides a host of functional, reporting,
and analytical capabilities. Federal Student Aid will have a central point to view and utilize integrated
data from multiple systems.

• Integrate and reengineer information systems to enable target business processes.

Federal Student Aid will reengineer and integrate systems to enable the target state business processes.
For example, the Integrated Partner Management (IPM) initiative will enable Federal Student Aid to
consistently and efficiently manage compliance and oversight for all trading partners. Federal Student
Aid will continue reengineering systems to implement other target business processes, such as
application processing and servicing, to improve the efficiency and effectiveness of those processes.

• Implement an integrated, standards-based technical infrastructure that emphasizes enterprise
reusable shared assets.

Federal Student Aid has adopted a Service Oriented Architecture (SOA) approach to support
implementation of the TSV. SOA enables a collection of standard reusable services that will be shared
across all of Federal Student Aid. The TSV technical infrastructure includes the following components:

o Portal: A single access point for online information and services required by Federal Student
Aid customers, partners, and the general public;

o Enterprise Service Bus: Provides messaging and integration services to facilitate the use of shared
functions and access to shared data through SOA;

o Security Architecture: Provides enterprise security services including access and identity
management tools;

o Gateway: Provides a single access point for external partner systems to interact with Federal
Student Aid systems and services.

2.2 Architectural Principles

Federal Student Aid must collaborate with numerous financial institutions, schools, and government agencies in
order to meet the needs of students who qualify for financial aid. This collaboration requires Federal Student
Aid to exchange and process large amounts of data each day. Most of Federal Student Aid’s applications were
developed using proprietary technologies based on legacy platforms and are becoming or already have become
technologically obsolete. In addition, many of the current systems at Federal Student Aid are stove-piped, which
has resulted in duplication of effort, functionality and data. Consequently it is becoming increasingly difficult to
keep these systems up to date, as the overall talent pool for these obsolete technologies is dwindling and the
systems do not conform to modern software development standards and architectures.

Therefore, in order to guide the development of future technological environments and to craft an architectural
vision that mitigates some of these environmental deficiencies, Federal Student Aid is adopting the following key
architectural principles:

Principle 1: The architecture should facilitate reuse of existing IT assets through creation of modular,
component-based systems that conform to a service-oriented architecture;

Principle 2: The architecture should facilitate interoperability of systems through the use of standards based
technologies, including SOA;

Principle 3: The architecture should facilitate scalability both vertically and horizontally;

Application Architectural Model
 2-3

6/11/2007 FINAL

Principle 4: The architecture should facilitate high availability through the leveraging of enterprise-class
hardware and software.

Principle 5: Service interfaces will be strongly typed.

2.3 Architectural Areas

In order to realize the TSV, Federal Student Aid must solve technical problems in several areas, ranging from the
delivery of timely, accurate and relevant business information in a user-friendly manner to the loading and
processing of data in large batches. To this end, technical capabilities have been identified to provide solutions
in these various problem domains in an overall Reference Architecture.

Each solution domain, or architectural area, is documented through its own architectural model in order to
communicate Federal Student Aid’s vision for each area. These models provide clarity and insight into how a
technical problem can be solved within each of these domains. The Federal Student Aid reference architecture is
presented in Figure 2-1 below:

Federal Student Aid
Architectural Areas

A
pplication Architecture

Security A
rchitecture

Portal A
rchitecture

Siebel/CRM

ESB Architecture

Figure 2-1: Architectural Areas

The following bullets describe each architectural area to be addressed by the reference architecture:

• Application Architecture presents Federal Student Aid’s vision to enable the capture of business logic
within a set of enterprise services, business components and data stores to perform transactional and
batch data processing operations.

• Security Architecture presents Federal Student Aid’s vision to enable secure access to all information
technology assets.

• Portal Architecture presents Federal Student Aid’s architectural vision for crafting solutions that
deliver information through enterprise portal technologies.

Application Architectural Model
 2-4

6/11/2007 FINAL

• Enterprise Service Bus (ESB) Architecture presents Federal Student Aid’s architectural vision for
service integration capabilities to coordinate flow of information between software services and
applications.

• Siebel/Customer Relationship Management (CRM) presents Federal Student Aid’s architectural
vision for enabling legacy and Commercial Off The Shelf (COTS) capabilities to coordinate flow of
information between new and existing systems.

2.4 Key Concepts

Federal Student Aid’s overall approach to application architecture is governed by the following key concepts that
will be incorporated into future technology solutions:

• Service-Oriented Architecture: SOA is a standards-based architectural philosophy supported by
numerous technological standards, vendors and products. A key to SOA is the notion of a software service,
which is a set of business and technical capabilities packaged as a service and made available for use outside
application, division, and even organizational boundaries. SOA is an important element of the overall
architecture at Federal Student Aid. The aim of the planned architecture is to package business functionality
currently embedded in and repeated across multiple applications into software services and to leverage these
services in future development efforts. This will allow Federal Student Aid to build an enterprise that will be
responsive to changing needs, facilitate systems maintenance and facilitate higher reuse of existing IT assets.

• Enterprise Service Bus: An ESB is an integration architecture implemented by technologies found in a
category of middleware infrastructure products usually based on web-services standards. The ESB
technology provides foundational services for a SOA via an event-driven and Extenisble Markup Language
(XML)-based messaging engine (“the bus”).

• Distributed (Tiered) Architecture: A distributed architecture divides a solution into logical parts (tiers)
based on the separation of concerns principle. For example, user interface features are contained within one
tier, business functionality and rule enforcement is contained in a separate tier and data access functionality is
contained in yet another separate tier. This style of architecture has been proven time and again in solutions
of varying size and scope to promote greater flexibility, simplified maintenance and increased reusability of
components, which is consistent with Federal Student Aid’s architectural principles mentioned in Section
2.2.

2.5 Architectural Model Overview

The architecture model is designed to reflect Federal Student Aid’s concept of a distributed, multi-tiered
approach to developing technology solutions. Each tier in the model provides a unique set of technical
capabilities that when combined will meet Federal Student Aid’s objectives. The model is depicted in Figure 2-2
below:

Application Architectural Model
 2-5

6/11/2007 FINAL

Data

Access

BusinessIntegrationClients

Infastructure

BI Reporting

Browser / Siebel

Partner

Browser / Portal

Batch

Desktop Swing

G
ateway

Business Component

Store

ESB

D
ev

el
op

m
en

t S
er

vi
ce

s Com
m

on Services

Service Process

Batch

SIEBEL

Legacy

Figure 2-2: Federal Student Aid Architectural Model

2.6 Architectural Model Tiers

There are four major tiers in the architecture model. Each tier contains several technology elements that enable
capabilities within that tier. In addition to the four tiers, there are three additional areas that do not play a direct
role in delivery of business functionality but are necessary to implement each tier. These areas include
development services, infrastructure, and common services. Their descriptions are outside the scope of this
document. The relevant architectural tiers are presented below:

2.6.1 Client Tier

The Client tier of an application contains the types of users that will be interfacing with the applications. As
identified in the Figure 2-2, the architectural model identifies six types of clients that can function as service
consumers as appropriate:

• Business Intelligence (BI) Reporting: Enterprise reporting, querying and analytical solutions which
can operate as standalone applications or be embedded within other applications;

• Desktop Swing: A Swing software application that is installed on an individual desktop computer;

• Batch: An application which initiates batch processing of business data;

• Browser/Portal: An application that is accessible from a web browser and that may or may not be
deployed within an enterprise portal infrastructure;

Application Architectural Model
 2-6

6/11/2007 FINAL

• Partner: An application which interacts through a service, which may be the product of an external
business partner or another government agency;

• Browser/Siebel: The user interface of a COTS software package, such as Siebel.

Detailed descriptions of these clients and their underlying technologies are outside the scope of this document
because they are not considered part of the application architecture. These clients are listed to describe the types
of clients that will exist in the Federal Student Aid technology environment. These clients can also be classified
as service consumers, which will access Federal Student Aid services through the ESB.

2.6.2 Integration Tier

The Integration Tier, which consists of the ESB, will provide the integration services required to implement the
SOA that will be used to integrate Federal Student Aid applications, services, and data. Accordingly, the ESB
will provide the reliable and manageable integration services required to facilitate implementation and use of
shared functions and to guarantee timely access to accurate shared data. Moreover, the ESB will bind islands of
automation within the Federal Student Aid enterprise into an integrated target state business solution that will
allow processes and data to be shared and coordinated with minimal restriction.

2.6.3 Business Tier

The Business tier implements the core business functionality and business logic of a solution and facilitates
communication between the front end and back end tiers. At Federal Student Aid, the business tier will consist
of transactional business components constructed to facilitate data processing. This tier also includes legacy and
COTS products that are leveraged to provide application functionality, which may be exposed as services or
called directly through external application programmatic interfaces (API).

For the purposes of the application architecture, all outward facing components will be exposed as services via
the ESB. Outward facing components are those components whose services will be leveraged by external
applications. Business components that are not exposed as external services, i.e. those that are only used within
the context of other solution components will be designed to adhere to the service oriented programming model
enabling them to be exposed to the enterprise, through the ESB, at a later time if required.

2.6.4 Data Tier

The purpose of the Data tier is to facilitate communication between business components and back-end data
stores in a controlled manner. The Data tier is subdivided into two levels as follows:

• Access: Consists of all application components that communicate with a database(s);

• Data Stores: Consists of the database schemas with which a given application must interact.

In most situations the business component performs the following three tasks:

• Creates an instance of a related data access component;

• Uses the data access component’s interface methods in order to communicate with the database;

• Destroys the instance of the data access component once the necessary output has been received, the
necessary operation(s) performed or a thrown exception has been caught.

Application Architectural Model
 3-1

Section 3: Application Architecture

The application architecture model provides the framework and guidelines for the development of custom-built
enterprise solutions for Federal Student Aid. The key enabler of the application architecture is the business tier,
which consists of services, processes, and business components. The Federal Student Aid Architectural Model is
shown below in Figure 3-1.

Data

Access

BusinessIntegrationClients

Infastructure

BI Reporting

Browser / Siebel

Partner

Browser / Portal

Batch

Desktop Swing

G
ateway

ORACLE

ESB WAS

DB2

Business Component

WebSphere Process Server

Store

SIEBEL

Legacy CICS

ESB

D
ev

el
op

m
en

t S
er

vi
ce

s Com
m

on Services

EJB

Service

WSDL
Interface

Process

WS BPEL

D
atabase

PO
JO

Fr
am

ew
or

k
Q

ue
ry

iBaits

St
or

ed
 P

ro
ce

du
re

H
ibernate

J
D
B
C

Batch

Batch Framework

EJB
Remote
Interface

Batch Framework

WebSphere Application Server

D
A
O

Figure 3-1: Federal Student Aid Architectural Model (static view)

6/11/2007 FINAL

Application Architectural Model
 3-2

The application architecture model has the following objectives:
• This application will support high volume transactional processing. Currently, the Central Processing

System (CPS) processes hundreds of thousands of transactions on a peak day;
• This architecture will support batch processing. Currently, the Common Originations and

Disbursements system (COD) manages thousands of batch files from schools participating in Federal
Student Aid programs;

• This architecture will support distributed transactions. A distributed transaction is a transaction that is
divided into threads of execution that spans multiple, independent, cooperating transactional systems or
components. An example of a distributed transaction might involve a web application that must execute
a logical business transaction by invoking a number of back-end business services that are deployed
within independent application servers that each commit data to a persistent store. The single logical
business transaction spans the multiple, independent application servers whose services are invoked;

• This architecture will support container managed transactions. A container managed transaction is
implemented by an application server or other container or operating environment that hosts the
execution of business logic. Typically, the implementation of the business logic, in Java or other
programming languages, does not need to be concerned with explicit management of database
transaction management;

• This architecture will support horizontal and vertical scaling, also known as "scaling up" and "scaling
out." Scaling up refers to increasing available processing resources by adding Central Processing Units
(CPU) (or cores) to a single server that supports a multi-CPU configuration. Scaling out refers to
increasing processing power by adding additional servers to a cluster;

• This architecture will help realize the advantages of component and reusable service-based software by
supporting service orientation.

In addition to the objectives outlined above, Federal Student Aid is interested in establishing a common Service
Oriented programming model for all Java applications. Solution providers will be expected to design their
solutions using Service Oriented Architecture design principles. It is expected that every solution will have a well
defined services layer, component layer and Plain Old Java Object (POJO) layer regardless of its requirements to
provide or consume services with the enterprise. Federal Student Aid is considering the adoption of the Service
Component Architecture (SCA) as this Service Oriented Architecture programming model. SCA brings many
benefits to the project team. These benefits include:

• Simplify the design and deployment of services;

• Establish a "transportable" set of engineering skills for service-oriented architecture (SOA) design;

• Enable many of the static analysis features that developers have come to expect in programming
environments, but that have been absent in services (such as dependency analyses and type checking).

The remaining subsections present a static view of the model that identifies technologies and recommendations
for building an application. Section 6 presents a dynamic view of the application model through the illustration
of various use cases that would apply to the application model.

6/11/2007 FINAL

Application Architectural Model
 3-3

3.1 Business Tier

The business tier contains an application’s services, business processes and business components that may
consist of POJOs, Enterprise Java Beans (EJB) and BPEL flows. The business tier can be broken down into four
major components:

• Service: Provides the interface and bindings to expose business functionality to service consumers;

• Process: Provides the high-level implementation of business processes and workflows. This is achieved
by choreographing the performance of operations within related business services to achieve a business
result.

• Business Component: Executes business logic and persists transactional data to the database.

• Batch: Facilitates efficient processing of large volumes of data. The batch component will be coupled
with the business component to implement business logic for both transactional (single-record) and
batch operations.

3.1.1 Service

The service component consists of the technologies that will be used to publish services to the ESB and the
outside world. All components in the business tier should publish Web Service and Remote EJB interfaces.

Web Services Interface

• Best Practice: Web Services Definition Language (WSDL) standards are used to define service
interfaces exposed to external applications.

• Description: A Web service is a software component that is designed to support machine to machine
(consumer to provider) interaction over a network through standard web protocols, regardless of the
implementation platforms of the consuming application and the service itself. The communication
mechanism within web services is XML-based messaging that follows the SOAP-standard. Common in
both the field and the terminology is the assumption that there is also a machine readable description of
the methods (operations) and signatures (required inputs and outputs) provided by the service, in the
WSDL file. A web service will not support the flow of a transaction context between the service
consumer and provider (no two-phase commit support). The service itself can provide transactional
support and optionally should support compensation in the event that rollback becomes necessary, most
often as the result of an exception occurring during processing.

• Rationale: Services exposed with Web Service bindings help the Federal Student Aid architecture
adhere to an SOA standard where the basic unit of communication is a message, rather than an
operation. This is often referred to as "message-oriented" services. Additionally, designing services today
with a standard WSDL interface will allow for easy deployment of services in an SCA environment that
Federal Student Aid will most likely move to in the future. The key benefits are outline in Table 3-1
below:

Key Benefit Architectural Fit

SCA Support SCA facades can easily be programmed to leverage
existing Web Service Interfaces. Additionally, SCA bindings
can be used to synthesize web service bindings to provide

6/11/2007 FINAL

Application Architectural Model
 3-4

Key Benefit Architectural Fit
backwards compatibility with existing clients.

Industry Standard SOA Web services are supported by most major software
vendors and industry analysts. Web Services allow for
communications between different implementation platforms
(e.g. .NET and Java 2 Enterprise Edition (J2EE)). Web
Services also promote loose coupling because the focus
becomes the "contract" that the WSDL provides, rather than
the underlying implementation details.

Table 3-1: Web Services Interface Key Benefits

• Adoption Status: Growing - Limited institutional experience at Federal Student Aid. This is a mature
industry standard. Federal Student Aid is currently infesting in a robust ESB infrastructure to support
SOA based solutions.

• Related Standards and Technologies: World Wide Web Consortium (W3C) Specification; SOAP;
WSDL; Universal Description, Discovery and Integration (UDDI).

EJB Remote Interface

• Best Practice: EJB Remote Interfaces are the primary implementation technology for concert service
interface implementations.

• Description: The EJB remote interface provides the actual access to the business-specific functionality
of an EJB.

• Rationale: Designing services today with a standard EJB remote interface will allow for easy
deployment of the EJB component in an SCA environment that Federal Student Aid will most likely
move to in the future. EJB bindings should be used where transaction context is required to flow
between the service consumer and provider (support of two-phase commit is required). EJB bindings
should be used when the services needs to start or join a transaction where all activities within the
transaction must commit or fail as a logical unit. SOAP based bindings should be considered first. If it
is determined that compensation-based rollback is too complicated or impossible, EJB bindings should
be considered. The key benefits are outline in Table 3-2 below:

Key Benefit Architectural Fit

SCA Support SCA facades can be built to leverage EJB remote
interfaces.

Industry Standard The EJB remote interface is the industry standard for
remotely accessing an EJB in a pure Java environment.

Table 3-2: EJB Remote Interface Key Benefits

6/11/2007 FINAL

Application Architectural Model
 3-5

• Adoption Status: Emerging - No institutional experience at Federal Student Aid. This is a mature
industry standard.

• Related Standards and Technologies: EJB Specification

3.1.2 Process

The process component consists of the technologies that will be used to orchestrate simple business components
into more complex process flows.

Web Services Business Processing Execution Language (WS-BPEL)

• Best Practice: WS-BPEL supports the orchestration of business services to realize more complex
processes and flows. Service providers will have WS-BPEL available for service development via
WebSphere Process Server (WPS). WebSphere BPEL extensions may be used in Federal Student Aid
solutions.

• Description: Process flows are implementations of workflows that choreograph several less complex
business services to construct a complete business process. If one or more services fail to execute
correctly, the business process flow understands the steps or actions necessary to handle exception
conditions. It is important to note that many of the Federal Student Aid approved technologies include
an orchestration tool e.g. FileNet, Siebel and Tivoli. When selecting the appropriate orchestration tool,
vendors need to consider the business requirements. Federal Student Aid would like to standardize on
WS-BPEL using the WebSphere Process server when there is no compelling reason to use the other
workflow engines available in the infrastructure. FileNet provides unique capabilities to manage the
workflow of documents, if these unique abilities meet the business needs better than process server, the
alternate work flow engine should be used. Federal Student Aid recommends that the Process Server
workflow engine be considered first and alternate workflow engines be justified against the inability of
process server to meet the needs of the business requirements.

• Rationale: Federal Student Aid recommends WS-BPEL for implementing process services. WS-BPEL
provides the capability to direct flow of information to various systems in the context of a business
process. This will enable Federal Student Aid to better coordinate the activities of various enterprise
applications that play a key role in enabling business processes. The key benefits are outline in Table 3-3
below:

Key Benefit Architectural Fit

Scalability WS-BPEL processes deployed in WebSphere Process
Server scale with Process Server.

SCA Support Full specifications exist for wrapping WS-BPEL processes in
SCA facades both in WebSphere Process Server and via
using Web Service Bindings.

6/11/2007 FINAL

Application Architectural Model
 3-6

Key Benefit Architectural Fit

Industry Standard WS-BPEL is an Organization for the Advancement of
Structured Information Standards (OASIS) standard that is
backed by Sun, IBM, HP, Adobe and many others.

Table 3-3: WS-BPEL Key Benefits

• Adoption Status: Emerging - No institutional experience at Federal Student Aid. This is an emerging
industry standard.

• Related Standards and Technologies: WS-BPEL Specification, IBM Websphere Process Server

3.1.3 Business Component

The business component will executes business logic and persist transactional data to the database.

Stateless Session Beans

• Best Practice: Stateless session beans implement business components that need to manage
transactions.

• Description: A session bean encapsulates business rules and logic pertaining to a defined operation or
set of operations and is one of three types of components within the EJB specification (the other two
types of beans being entity beans and message beans or message-driven beans). It is instantiated by a
client, is interacted with through it’s remote interface, and is reused by other clients when the processing
is complete.

A stateless session bean does not maintain a conversational state for a particular client. When a client
invokes the method of a stateless bean, the bean's instance variables may contain a state, but only for the
duration of the method invocation. In contrast, a stateful session bean maintains conversational state
across methods and transactions and each instance is attributed to a specific client.

Since stateless session beans can easily support multiple clients, they offer better scalability for high-
traffic applications. However, as a trade-off, session state will need to be maintained in the Client tier
using a state management mechanism that is applicable to type of client being used.

• Rationale: Stateless session beans have been selected as the key enabling technology for implementing
business component functionality because they provide transaction management, SCA support, are
highly scalable and are well accepted in industry. The key benefits are outline in Table 3-4 below:

6/11/2007 FINAL

Application Architectural Model
 3-7

Key Benefit Architectural Fit

Transaction Management Stateless session beans can manage complex transactions
involving multiple resources, allowing transactional context
to be transferred between components and processing
layers of an application in order to maintain transactional
integrity. Transaction management can be delegated to the
EJB container or managed within the bean code.

Scalability Stateless session beans are well-suited to high volume
applications and are an industry-accepted means for
implementing business functionality in enterprise
applications. Existing technologies can easily support
scaling through threading and clustering technologies.

SCA Support Full specifications exist for wrapping EJB containers and
stateless session beans in SCA facades. SCA will allow
Federal Student Aid to evolve its solutions over time. There
are a number of competing technologies to Stateless
Session beans. Using the SCA programming model,
solutions will be able to leverage these technologies over
time without requiring massive redesign of existing
solutions.

Industry Standard Stateless session beans are currently a widely adopted
industry standard used within n-tiered distributed
applications. There is considerable debate in the industry
concerning evolving component technologies and
consequently we anticipate that EJB technologies may be
replaced by other immerging technologies in time. This is
why SCA is critical to this architecture. The application
architecture used for Federal Student Aid solutions must be
able to accommodate technological shifts over time without
requiring massive redesign or restructuring of an
application.

Table 3-4: Stateless Session Bean Key Benefits

• Adoption Status: Emerging - No institutional experience at Federal Student Aid. This is a mature
industry technology.

• Related Standards and Technologies: EJB Specification, IBM Websphere Application Server

3.1.4 Batch Processing

A batch processing framework has not yet been selected at this time; however, the only constraint on a batch
framework will be that the framework must implement business logic via remote instantiation of the stateless
session bean business component. Key functional considerations for a batch framework include:

• Partitioning: Partitioning is a process of packaging and managing batch processing streams so as to
maximize throughput and maximize utilization of available hardware resources while preserving the
integrity of the underlying databases(s) and processes. Partitioning typically involves both division of a
large batch stream into smaller units of work and combining small batch streams into larger units of
work. The objective is that units of work have minimum dependencies upon each other so that they can

6/11/2007 FINAL

Application Architectural Model
 3-8

be processed concurrently. Additionally, if batch transactions have any dependencies upon each other
(e.g. one must be executed first before another one to be processed correctly or related transactions
must produce some sort of "group" total or aggregate), those transactions would be placed into the same
partition so that they are executed in the proper order and will properly compute any required
aggregates.

• Scalability: The framework should be able to scale vertically and horizontally.

• Ability to manage checkpoints and restarts: Each component that processes a batch of data should save
its state periodically so that in the event of a failure, it can be restarted and will be capable of carrying on
where it left off. The checkpoint / restart must preserve the integrity of its results. In particular, it must
not process any transaction more than once and must not skip any transactions. When concurrency and
parallelism are added into the mix, the management becomes more complicated in that each process that
is executing in parallel must be capable of performing a checkpoint / restart across all dependent
processes.

Federal Student Aid has examined WebSphere Extended Deployment (XD) and recommends that solution
providers investigate this tool when considering the architecture of solutions that require a batch-processing
framework. Federal Student Aid has also discussed WebSphere Information Server as a base for a batch-
processing framework. Federal Student Aid requires that solution provider’s work closely with CIO personnel to
collaboratively select the appropriate batch processing framework. Federal Student Aid does not recommend
implementing transactional business logic in Information Server. All transactional business logic should reside in
the EJB implemented in the business component layer.

• Adoption Status: Mature – Proven experience at Federal Student Aid

3.2 Data Tier

The sole purpose of the Data Tier of an application is to facilitate two-way communication between business
components and back-end data stores in a controlled manner.

3.2.1 Data Access

Design Patterns

• Best Practice: The Data Access Object (DAO) design pattern will be the base design pattern used to
develop data access components within applications. It may be used in conjunction with other design
patterns as circumstances warrant.

(See http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html for more
information about the DAO pattern.)

• Description: The DAO-based data access component encapsulates all data operations and abstracts
the underlying implementation specifics from the business component (EJB) that instantiates it. It is
responsible for managing transactional state with the database, executing database calls, and preparing
inputs and outputs – Value Objects -- into formats that business components can use and process.

• Rationale: The DAO design pattern is consistent with the architectural principles provided in Section
2.2 of this document. Specifically:

6/11/2007 FINAL

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

Application Architectural Model
 3-9

• This design approach has been proven effective in a wide variety of applications, from smaller
applications with limited processing demands to high-demand enterprise applications;

• The encapsulation of data and abstraction of processing specifics promotes loose coupling of
business components and data components, meaning that business components do not have to be
developed based on the processing needs and requirements of the data access components;

• This approach is consistent with modular design and development practices, which facilitates the as-
needed implementation of production-tested application components and centralization of
maintenance;

• Value Objects can be returned to Business Components in multiple formats as necessary. Federal
Student Aid has specified a desire to base all Value Objects on established XML schema standards
for enterprise data where standards currently exist. In cases where enterprise-wide standards do not
exist for a given business entity, the development team shall collaborate with Federal Student Aid’s
Data Management Group to define an appropriate standard;

 The key benefits of Design Patterns are highlighted in Table 3-5:

Key Benefit Architectural Fit

Scalability These types of components have been deployed
successfully in applications of all sizes.

SCA Support Components can be utilized by business components
wrapped in SCA. These components can also be wrapped
in SCA and exposed as services themselves if necessary.

Industry Standard The development of data access components built on DAO-
based patterns and using Value Objects as transfer
mechanisms is a proven practice that has wide acceptance
within the industry. Furthermore, the abstraction of
database communications in consistent with Federal
Student Aid’s desire to promote loose coupling of
application components.

Table 3-5: Design Patterns Key Benefits

• Adoption Status: Emerging - No institutional experience at Federal Student Aid. This is a mature

industry pattern.
• Related Standards and Technologies: No specific technologies. (See

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html for more
information about the DAO pattern.) Readers are encouraged to search the Internet and review
alternate DAO pattern descriptions.

Data Access Technologies

6/11/2007 FINAL

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

Application Architectural Model
 3-10

• Best Practice: Hibernate, iBATIS and Java Database Connectivity (JDBC) are recommended
persistence frameworks to be used within data access components. The selection of the exact
framework to be used is subject to development team’s specific needs.

• Description: recommended applications of these technologies are described as follows:

o Hibernate: Hibernate is an object-relational mapping (ORM) and query framework which
translates data entities into concrete objects and provides complete abstraction of data access
operations and value object generation, therefore requiring a relatively lower level of
development skill when compared to iBATIS and JDBC. It utilizes a native query language and
interface (Hibernate Query Language, or HQL for short) which is translated into Structured
Query Language (SQL) to communicate with both relational and non-relational data sources;

o iBATIS: iBATIS is a persistence framework that facilitates data access through a variety of
means, including stored procedures and dynamic SQL and object-relational mapping through
the use of SQL Maps, which are XML-based descriptors used to represent physical database
objects or JDBC result sets. Similar to Hibernate, iBATIS provides an abstraction layer for
database communications and can generate JDBC and SQL behind the scenes; however,
iBATIS is more geared toward result set manipulation and its level of abstraction is somewhat
lower, requiring comparatively more development skill than Hibernate but also allowing the
developer to have slightly more control of communications and value object generation;

o JDBC: JDBC is Java’s standard mechanism to enable applications to communicate with both
relational and non-relational data sources and is at the center of all data access frameworks.
Direct coding of JDBC can be leveraged in environments where Hibernate and iBATIS are not
used and where complete control of data access operations and value object generation is
desired or required. The use of JDBC to communicate with the database will be limited to
stored procedure calls (executed as java.sql.CallableStatement objects or equivalent based on the
JDBC driver set used); at no time should embedded SQL statements be used. For more
information on this decision, please refer to “Section 4 – Architectural Decisions.”

• Rationale: All three frameworks can be effectively utilized within DAO-based data access component
implementations, and it can be left up to the development team to select which framework(s) are to be
used within a given project based on one or more of the following factors:

o The type of data store(s) to be accessed;

o The levels of control required in communicating with the database and generating value objects;

o The skill mix and level of expertise of the development team.

The key benefits of Data Access Technologies are highlighted in Table 3-6:

Key Benefit Architectural Fit

Transaction Management All three frameworks have been proven to work in
transactional environments.

Scalability All of these frameworks have been leveraged in systems of

6/11/2007 FINAL

Application Architectural Model
 3-11

Key Benefit Architectural Fit
various sizes.

SCA Support All three frameworks can be leveraged within an SCA
environment, as they are utilized within the data access
component itself.

Industry Standard JDBC is Java’s standard data access mechanism and is at
the center of both Hibernate and iBATIS.

The use of Hibernate and iBATIS is widely accepted within
the industry. Furthermore, given the ability of Hibernate and
iBATIS to abstract data access operations in varying
degrees, they are consistent with Federal Student Aid’s
developer pool concept, whereby the reliance on
specialized expertise for specific technologies can be
reduced.

Table 3-6: Data Access Technologies Key Benefits

• Adoption Status: Emerging - No institutional experience at Federal Student Aid. These are mature

industry technologies.
• Related Standards and Technologies: Hibernate; iBATIS; JDBC API

SQL Processing

• Best Practice: Database access will be performed through the use of database stored procedures or
framework-generated SQL statements, such as those generated by iBATIS SQL Map descriptors and the
Hibernate Query Language (HQL). As previously mentioned, no direct coding of SQL statements
should be performed within data access components.

• Description: Stored procedures are developed within the database environment and provide a
controlled interface through which data operations are conducted. Required inputs and outputs, along
with their individual data types, are described in the call specification and data access components must
be equipped to provide these items in order for calls to be successfully executed. Stored procedures are
also useful for completing complex processing tasks, such as multi-table retrieve and update operations
and data definition language (DDL) commands.

Frameworks such as iBATIS and Hibernate provide abstraction layers which generate prepared SQL
statements behind the scenes. This is particularly useful in situations where the development team lacks
a strong database developer or administrator, or in situations where the target data store is not a
relational database, such as XML documents, flat files and the like. In this instance, the application
developer issues calls to exposed framework methods, which then use JDBC behind the scenes to
prepare data store calls, receive and process outputs and return Value Objects, which are then utilized by
business components. Development teams should plan to coordinate with the database administrator to
optimize generated SQL statements and/or stored procedures to mitigate the risk of degraded system
performance.

6/11/2007 FINAL

Application Architectural Model
 3-12

• Rationale: The use of stored procedures is ubiquitous in applications of every type and size, and
predates the existence of the modern ORM frameworks. Most, if not all, application development teams
will include database developers or administrators who develop and deploy stored procedure-based data
access mechanisms as part of their core job functions. However, in situations where a development
team does not possess strong database skills or significant productivity gains can be realized, the use of
Hibernate and/or iBATIS can help to mitigate this skill gap or increase productivity.

The key benefits of SQL Processing are highlighted in Table 3-7:

Key Benefit Architectural Fit

Transaction Management These technologies can be utilized to perform both
transactional and non-transactional data operations.

Scalability Both stored procedures and queries generated by the
Hibernate and iBATIS frameworks can be effectively used in
applications of all sizes.

SCA Support Not applicable, as these processes are embedded within
the data access component and are abstracted from the
business component layer.

Industry Standard The use of stored procedures is a proven practice for
developing database interfaces within applications and has
wide industry acceptance. Dependent on the development
team’s skill set, the iBATIS and Hibernate frameworks can
either leverage stored procedures or generate SQL and
JDBC code automatically.

Table 3-7: SQL Processing Key Benefits

• Adoption Status: Emerging/Mature - No institutional experience in Hiberate and iBATIS at Federal
Student Aid. Extensive institutional experience with JDBC at Federal Student Aid. These are mature
industry technologies.

• Related Standards and Technologies: SQL (American National Standards Institute (ANSI))

3.3 Development Tools

Table 3-8 below identifies the tools that should be leveraged when developing and deploying the technology
components that are part of the application architecture.

6/11/2007 FINAL

Application Architectural Model
 3-13

Key Development Tool Technology Notes
Application Server Toolkit V6.1 SCA on Websphere

Application Server (WAS)
6.1 with SOA Feature
Pack

There appears to be no automated generation of SCDL
(Service Component Definition Language) files that
contain the structured info used by the server to load and
manage an SCA component. Text editors can be used to
enter the SCDL XML (and possibly other artifacts) and
manually place them in the project directory structure.

WebSphere Integration
Developer

SCA on WebSphere
Process Server

All SCA functionality is supported. A graphical component
composition palette is provided. Automatic generation of
required SCA SCDL and other required artifacts can be
performed.

WebSphere Integration
Developer

Business Process
Execution Language
Process Flows on
WebSphere Process
Server

WebSphere Integration Developer (WID) supports
building BPEL flows between SCA components. The
BPEL flows become new SCA components that can be
used in new BPEL flows.

J2EE-Enabled Eclipse
Integration Developer
Environment (IDE)

Stateless Session Bean Most open source tools can manage EJB development.
Ensure that the selected tools can leverage WebSphere
Application Server.

TOAD, SQL Navigator (or other
database development client)

Database Development These tools can be used to develop stored procedures,
indexes and other database objects once a physical
database model has been defined.

ERWin, Rational Data Architect,
Oracle Designer (or other data
modeling tool)

Database Design Design tools can be leveraged to define key business
entities, attributes and relationships (logical data models),
which can then be used to generate physical database
models (tables, fields, views, indexes, etc.)

Table 3-8: Key Development Tools

3.4 Adoption

Federal Student Aid has developed an adoption framework to help describe standard technologies as well as
emerging ones that are under consideration for use. These technologies are listed in Table 3-6 below along with
their associated adoption status:

• Emerging- No institutional experience at Federal Student Aid

• Candidate- No production experience but some experimental experience at Federal Student Aid

• Growing- Limited production experience at Federal Student Aid

• Mature- Proven production experience at Federal Student Aid

Technology Adoption
Status

Explanation

EJB Emerging No institutional experience at Federal Student Aid. This is a mature industry
technology.

6/11/2007 FINAL

Application Architectural Model
 3-14

Technology Adoption
Status

Explanation

iBATIS Emerging No institutional experience at Federal Student Aid. This is a mature open source
product.

Remote Method
Invocation (RMI)

Emerging No institutional experience at Federal Student Aid. This is a mature industry
standard

SOAP Growing Some institutional experience at Federal Student Aid. This is a mature industry
standard.

WS-BPEL Emerging No institutional experience at Federal Student Aid. This is a mature industry
standard.

Java Messaging Service
(JMS)

Candidate Some production experience but some experimental experience at Federal Student
Aid. This is a mature industry standard.

Stored Procedures Mature Several systems at Federal Student Aid use stored procedure extensively in both
on-line and batch production

Table 3-9: Adoption Examples

3.5 Constraints

Federal Student Aid has standardized on several key technologies required to support Federal Student Aid’s next
generation application architecture. The following standards are core foundation technologies to this
architecture:

• WebSphere Application Server (6.x +)
• WebSphere Process Server (6.x +)
• WebSphere MQ (6.x +)
• WebSphere Message Broker (6.x +)
• WebSphere Portal Server (6.x +)
• Oracle 10g Relational Database Management System
• Data Power XML Accelerator

The conceptual architecture assumes that these base technologies are available for use and focuses on
implementation options and patterns.

6/11/2007 FINAL

Application Architectural Model 4-1

Section 4: Architectural Decisions

This section presents key architectural decisions that were made as part of the architecture definition efforts.
These decisions were derived from numerous discussions among key stakeholders over time. These decisions
reflect current thinking of Federal Student Aid’s for defining application architecture.

Architecture Decision
1. SQL-Java (SQLJ) is not a recommended technology
SQLJ, which stands for "SQL-Java¹," is a multi-part specification for using SQL with Java:

 Part 0: Embedded SQL in Java. This provides a somewhat more object-oriented approach to the standard
way of embedding SQL statements in programs. Part 0 supports static SQL statements in Java. It does not
support dynamic SQL statements. Those are handled by JDBC. Part 0 does support mixing embedded
static SQL statements with JDBC statements. Part 0 supports the same mapping between Java data types
and SQL data types that is defined by JDBC. Also see the SQLJ execution environment (new window).

 Part 1: SQL routines using Java. This provides the ability to invoke methods written in Java from SQL
code. The Java methods provide the implementation of SQL procedures. To support Part 1, a DBMS must
have a Java Virtual Machine associated with it. Part 1 deals only with static methods. For an association
between SQL functions and Java methods, each SQL parameter and its corresponding Java parameter
must be able to be mapped and the two return types must be able to be mapped. Also see mapping SQL
and Java data types (new window).

 Part 2: SQL types using Java. This defines SQL extensions for using Java classes as data types in SQL.
Part 2 allows mapping of SQL:1999 User Defined Types (UDTs) to Java classes. It also allows importing a
Java package into your SQL database by defining tables containing columns whose data type are specified
to be a Java class. Structured types are associated with classes, attributes with fields, and initializers to
constructors. All or part of an SQL type hierarchy can be represented in a Java class hierarchy. It is not
necessary to associate the entire SQL type hierarchy to a Java hierarchy. Part 2 adds non-static methods to
the static methods in Part1. Also see SQL:1999 (new window).

(See http://www.service-architecture.com/database/articles/sqlj.html for full text)

Architectural
Area: Data Tier Implications:

JDBC and/or iBATIS and
Hibernate should be used for data
access instead of SQLJ.

Rationale:
SQLJ is considered somewhat of a
niche technology and is not widely
accepted in the industry.

Decision
Data:

SQLJ is gradually being
deprecated by many vendors,
including Oracle, meaning that its

6/11/2007 FINAL

http://www.service-architecture.com/database/articles/sqlj_execution_environment.html
http://www.service-architecture.com/database/articles/mapping_sql_and_java_data_types.html
http://www.service-architecture.com/database/articles/mapping_sql_and_java_data_types.html
http://www.service-architecture.com/database/articles/sql1999.html
http://www.service-architecture.com/database/articles/sqlj.html

Application Architectural Model 4-2

long-term viability is questionable.

Architecture Decision
2. Static SQL should not be coded inside of data access components

Static SQL statements are hard coded in an application program when the source code is written. The
source code is then processed using a SQL pre-compiler before it can be compiled and executed.

Architectural
Area:

Data Tier Implications:

Stored procedures and framework
generated queries are the only
recommended mechanisms for
data access.

Rationale:

Persistence frameworks can
automatically generate SQL
statements and execute stored
procedures. As a result,
developers do not need to know
SQL in order to program calls to
data stores. In the absence of a
persistence framework, stored
procedures can still be used to
control access to business data the
in underlying tables more
effectively than can dynamic SQL
queries (which in effect are not
controlled).

Decision
Data:

Given the ability of the
persistence frameworks to
generate SQL behind the scenes,
regardless of whether or not
stored procedures are used, there
is no foreseeable need to hardcode
SQL queries into data access code.

6/11/2007 FINAL

Application Architectural Model 5-1

Section 5: Glossary and Standards

This section presents and defines key standards and technologies that are part of Federal Student Aid’s
application architecture model. The purpose of this section is to clearly reflect standards and technologies chosen
for inclusion in the model. Readers should reference Appendix A for a complete list of acronyms used in this
document.

The application architecture model is based on key concepts, standards and technologies that are part of the best
practices for building modern business applications. However, some of these concepts, standards, and
technologies are still evolving; therefore, they are presented here to avoid confusion and ambiguity on the
interpretation of these concepts, standards, and technologies and their use.

Table 5-1 below presents a glossary of technologies and standards employed in this document.

Term Definition

BI Tools
A suite of software tools used to provide standard and ad hoc reporting and analytical
capabilities on an enterprise scale

CICS

Customer Information Control System (CICS) is a transaction processing system
designed for both online and batch activity. CICS applications can be written in
numerous programming languages, including Java, PL/I, C, C++, and IBM Basic
Assembly Language.

COTS

Commercial off-the-shelf: A term for software or hardware products that are ready-made
and available for sale, lease, or license to the general public. They are often used as
alternatives to in-house developments or one-off government-funded developments.

CRM Customer relationship management software

DAO

Data Access Object: A software component that provides a common interface between
the application and one or more data storage devices, such as a database or file. Also,
frequently used to refer to the Data Access Object design pattern.

DB2

DB2 is IBM's line of Relational Database Management System (RDBMS) (or, as IBM
now calls it, data server) software products within IBM's broader Information
Management software line. Most often DB2 refers to DB2 Enterprise Server Edition or
the top of the line DB2 Data Warehouse Edition (DB2 DWE) which runs on Unix,
Windows or Linux servers;

EAI
Enterprise Application Integration: Defined as the uses of software and computer
systems architectural principles to integrate a set of enterprise computer applications.

EII
Enterprise Information Integration. It describes the process of using data abstraction to
address the data access challenges associated with heterogeneous (federated) data

EJB
Enterprise Java Beans: A server-side component architecture used to develop
transaction-based distributed systems on the J2EE platform

ESB
Enterprise Service Bus: An ESB is an integration architecture implemented by
technologies found in a category of middleware infrastructure products usually based on

6/11/2007 FINAL

Application Architectural Model 5-2

Term Definition
web-services standards. The ESB technology provides foundational services for a
service-oriented architecture (SOAs) via an event-driven and XML-based messaging
engine (“the bus”).

ETL

Extract, Transform, and Load: A process in data warehousing that involves
 * extracting data from outside sources,
 * transforming it to fit business needs, and ultimately
 * loading it into a data warehouse/data mart.

Hibernate

An ORM framework that can be used to transform data entities into concrete objects,
and can be used to access both relational and non-relational database storage
mechanisms. Hibernate is a public open – source framework.

HQL The native query language used by Hibernate.

iBATIS

An ORM framework that can be used to leverage existing relational database
investment and assets, including tables, views and stored procedures through the use of
XML-based descriptors (SQL Maps)

JDBC

The standard data access mechanism provided with the Java platform, used to access a
variety of data storage mechanisms such as relational databases, spreadsheets and flat
files

JVM

Java Virtual Machine (JVM): A virtual machine that interprets and executes Java
bytecode. This code is most often generated by Java language compilers, although the
JVM can also be targeted by compilers of other languages.

LDAP
Lightweight Directory Access Protocol: An application protocol for querying and
modifying directory services running over TCP/IP.

Legacy
Describes a system that is in current production use at the time a new development
effort is undertaken

OLTP

Online Transaction Processing: A class of programs that facilitate and manage
transaction-oriented applications, typically for data entry and retrieval transaction
processing.

Oracle

An Oracle database consists of a collection of data managed by an Oracle database
management system. Popular generic usage also uses the term to refer to the Oracle
Database Management System (DBMS), but not necessarily to a specific database
under its control.

ORM
Object-Relational Mapping: A programming technique for converting data between
incompatible type systems in databases and Object-oriented programming languages.

POJO

Plain Old Java Object: A Java object which does not follow a specific object model,
convention or framework and which, absent the use of any cross-platform integration
technologies, can only be utilized by Java-based systems

Portal

A Web portal is a single point of access to information that is linked to various logically
related internet-based applications and of interest to various types of users.

Portals present information from diverse sources in a unified way. They provide an
excellent way for enterprises to provide a consistent look and feel with access control
and procedures for multiple applications, which otherwise would have been different
entities altogether.

Query A database query, the standard way information is extracted from databases.

RDBMS
Relational Database Management System: A database management system in which
data is stored in tables and the relationship among the data is also stored in tables.

RMI

Java Remote Method Invocation is a Java application programming interface for
performing the object equivalent of remote procedure calls. RMI allows Java objects
running in different JVMs to communicate with each other.

SCA
Service Component Architecture: A set of specifications that describe a model for
building applications and systems using a Service-Oriented Architecture. SCA extends

6/11/2007 FINAL

Application Architectural Model 5-3

Term Definition
and complements prior approaches to implementing services, and SCA builds on open
standards such as Web services.

Siebel
Siebel is principally engaged in the design, development, marketing and support of CRM
applications. It is currently owned by Oracle

SOA

Service-Oriented Architecture: SOA is an architectural style. Applications built using an
SOA style deliver coarse grained functionality as services that can be shared when
building applications or when integrating within the enterprise or with trading partners.

SOAP

A technique for serializing object values to XML and reconstructing them as objects.
SOAP handles the round trip between object and XML. May also be referred to as
Service-Oriented Architecture Protocol

SQL

Structured Query Language: A fourth-generation (4GL) programming language used
specifically to query a relational database and perform basic record operations such as
reads, inserts, updates and deletes

Stored Procedure
(Proc)

Stored Procedures: Subroutines and/or functions built within a relational database,
which leverage SQL to perform database-level operations. Stored procedures are also
used to provide applications with a well-defined interface and controlled access to
underlying data

Swing

Swing is a graphical user interface (GUI) toolkit for Java. It is one part of the Java
Foundation Classes (JFC). Swing includes GUI objects such as text boxes, buttons,
split-panes, and tables.

Value Objects

Value Objects are a software design pattern used to transfer data between software
application subsystems. Value Objects are often used in conjunction with Data Access
Objects to represent data retrieved from a database.

WAS
IBM WebSphere Application Server: A software application server. WAS is built using
open standards such as J2EE, XML, and Web Services.

Web Service

A software system designed to support interoperable Machine to Machine interaction
over a network. Web services are frequently just Web APIs that can be accessed over a
network, such as the Internet, and executed on a remote system hosting the requested
services.

WebSphere
Message Broker

IBM's information broker from the WebSphere product family that allows business data
and information in the form of messages to flow between disparate applications across
multiple hardware and software platforms. Business rules can be applied to the data
flowing through the message broker to route, store, retrieve, and transform the
information.

Websphere MQ

A network communication technology launched by IBM. It was previously known as
MQSeries, which is a trademark that was rebranded by IBM in 2002 to join the suite of
WebSphere products. WebSphere MQ is IBM's Message Oriented Middleware offering.
It allows independent and potentially non-concurrent applications on a distributed
system to communicate with each other.

WebSphere Portal
Server IBM's portal software which runs on top of WAS.
Workflow A description of the movement of information through a work process

WS-BPEL
Web Services Business Process Execution Language: An XML-based programming
language used to describe a business process

WSDL
Web Services Definition Language: An XML format used to define the external interface
to a web service as a series of endpoints

XML
Extensible Markup Language: A platform-neutral markup language used to describe
structured information in document form

6/11/2007 FINAL

Application Architectural Model 5-4

Table 5-1: Glossary

6/11/2007 FINAL

Application Architectural Model 6-1

Section 6: Use Cases

This section presents the architectural model in action. The dynamic representation of an architectural area will
be accomplished by depicting various architectural components in use by a set of selected use cases. The actual
representation of the dynamic model will be accomplished by developing sequence diagrams.

6.1 Overview

This subsection provides an overview of use cases applied to the application architecture model. The following
use case will be used to describe this architecture and its components.

Loan Disbursement Component: The loan disbursement use case describes the steps involved to update
the loan and disbursement databases when a new disbursement occurs. The loan disbursement is a key
service that Federal Student Aid provides to its customers.

Note: This is a highly simplified example for illustrative purposes. It is not intended to represent the
complexities of Federal Student Aid’s production disbursement processing. It is primarily intended to
illustrate how transactions can be managed and demarcated using the application architecture described in
this model.

6.2 Loan Disbursement Component

When a loan disbursement occurs three key pieces of information are transmitted from the service consumer:

1. Borrower ID

2. Loan ID

3. Disbursement Transaction Information, in the form of a Value Object

The Borrower and Loan ID are queried against the person database to return the person and loan information
that the disbursement applies to. This information is then combined with the Disbursement ID to create a
disbursement record that is written to the database. As a final step the loan record is updated in the database
with the new disbursement data. The sequence diagram for this use case is described in the following section.

6.2.1 Sequence Diagram

The Service Consumer initiates the process by sending the Borrower ID, Loan ID and Disbursement
information as a Service Data Object (SDO) to the SCA runtime. The SCA runtime then transforms the SDO

6/11/2007 FINAL

Application Architectural Model 6-2

into a POJO that is sent to the Disbursement Component. The Disbursement Component is a stateless session
bean residing in an EJB container, which encapsulates the logic necessary to make the disbursement updates
within the context of a distributed transaction.

The following describes the interchange between the disbursement component designed to update
disbursement information for a given person and loan. Process steps affecting each of the three concerned
entities – Person, Loan and Disbursement – are provided:

Step 1: Locate and lock the person record using the Borrower ID provided with the inbound SDO

• The Disbursement Component EJB receives the inbound SDO and initiates a transaction within the
called method;

• The Disbursement Component creates an instance of a Person DAO (PersonDAO) used to process
operations on a Person record;

• PersonDAO opens a connection to the database, and notifies the instantiating business component
if the connection attempt fails and the communication is terminated;

• Disbursement Component calls the requisite method of PersonDAO and provides the Borrower ID
parameter to begin updating Person record information;

• PersonDAO accepts the inputs and calls the database to locate and lock the Person record for the
duration of the transaction, in order to prevent potential data integrity issues resulting from multiple
concurrent updates to the same record;

• If the lock is successful, PersonDAO receives notification from the database; if an exception occurs
or no record is found the data access component throws an exception to the business component
and the communication is terminated.

 Step 2: Locate and lock the loan record using the Person ID and Loan ID provided with the inbound SDO
• The Disbursement Component creates an instance of a Loan data access object (LoanDAO) used to

process operations on a Loan record;
• In order to connect to the database, LoanDAO either uses a reference to the existing connection

within PersonDAO if connecting to the same database instance and schema, or creates its own
database connection if connecting to a different one;

• Disbursement Component calls the requisite method of LoanDAO and provides the Person ID and
Loan ID to begin updating the loan;

• LoanDAO accepts the inputs and calls the database to locate and lock the loan record;
• If the lock is successful, LoanDAO receives notification from the database; if an exception occurs

or no record is found the data access component throws an exception to the business component
and the communication is terminated. Any locks on Person and Loan are released and the
transaction rollback logic within the Disbursement Component is invoked.

 Step 3: Insert the disbursement transaction to the database
• The Disbursement Component creates an instance of a Disbursement data access object

(DisbursementDAO) used to process disbursement operations;
• In order to connect to the database, DisbursementDAO either uses a reference to the existing

connection within PersonDAO if connecting to the same database instance and schema, or creates
its own database connection if connecting to a different one;

6/11/2007 FINAL

Application Architectural Model 6-3

• Disbursement Component calls the requisite method of DisbursementDAO and provides the
Person, Loan and Disbursement transaction data;

• DisbursementDAO accepts the inputs and calls the database to insert the disbursement;
• If the insert is successful, DisbursementDAO receives notification from the database; if an

exception occurs, DisbursementDAO throws an exception to the business component and the
communication is terminated.

• DAOs release any locks on Person and Loan records.
 Step 4: EJB commits or rolls back the transaction and destroys DAO instances

• If the result from Step 3 was a successful processing of the operation, the EJB automatically
commits the transaction and processing is returned to the calling object. If the EJB exits while
throwing an error, the transaction is rolled back and processing is returned to the calling object.

• The “finally” block of the EJB method is processed regardless of transaction success or failure,
where DAO instances are destroyed in the reverse of their order of creation -- DisbursementDAO
is destroyed first, then LoanDAO and PersonDAO. Each DAO closes its database connection or
returns it to the associated connection pool as it is destroyed.

Figures 6-1 and 6-2 illustrate the use case described above through the use of sequence diagrams. The first
sequence diagram implements the data access objects using JDBC, the second uses Hibernate.

Service Consumer

DatabaseLoan DAO
:JDBC

Disbursement DAO
: JDBC

Person DAO
:JDBC

Disbursement
Component
:Stateless

Session Bean

SCA

Execute Stored
Procedure

Execute Stored
Procedure

Execute Stored
Procedure

Execute Stored
Procedure

Borrower ID
Loan ID
Disbursement ID

SDO

Borrower ID
Loan ID
Disbursement ID

POJO

Transactional
Boundary

Get Loan (Lock)

Get Person (Lock)

Update Loan

Insert Disbursement

Figure 6-1: Loan Disbursement Component (JDBC) Sequence Diagram

6/11/2007 FINAL

Application Architectural Model 6-4

Service Consumer

DatabaseLoan DAO
:Hibernate

Disbursement DAO
: Hibernate

Person DAO
:Hibernate

Disbursement
Component
:Stateless

Session Bean

SCA

Execute
Dynamic SQL

Execute
Dynamic SQL

Execute
Dynamic SQL

Execute
Dynamic SQL

Borrower ID
Loan ID
Disbursement ID

SDO

Borrower ID
Loan ID
Disbursement ID

POJO

Transactional
Boundary

Get Person (Lock)

Get Loan (Lock)

Insert Disbursement

Update Loan

Figure 6-2: Loan Disbursement Component (Hibernate) Sequence Diagram

6.2.2 Transaction Boundaries and Locking

For the disbursement use case, pessimistic locking of the person and loan entity should occur. The transactional
boundary will occur at the disbursement component. The application should leverage the intrinsic transaction
boundary capabilities of the EJB and should be based on the needs of the individual application.

6/11/2007 FINAL

Application Architectural Model A-1

Appendix A: Acronyms

Acronym Definition
ANSI American National Standards Institute
API Application Programmatic Interfaces
BI Business Intelligence
BPEL Business Processing Execution Language
CICS Customer Information Control System
CIO Chief Information Officer
COTS Commercial Off the Shelf
CPS Central Processing System
CPU Central Processing Units
CRM Customer Relationship Management
DAO Data Access Object
DBMS Database Management System
DDL Data Definition Language
DWE Data Warehouse Edition
EAI Enterprise Application Integration
EII Enterprise Information Integration
EJB Enterprise Java Bean
EJBQL Enterprise JavaBeans Query Language
ESB Enterprise Service Bus
ETL Extract Transform and Load
GUI Graphical User Interface
HEA Higher Education Act
HQL Hibernate Query Language
HTTP Hyper Text Transport Protocol
IDE Integration Developer Environment
IF Information Framework
IPM Integrated Partner Management
J2EE Java 2 Enterprise Edition
JDBC Java Database Connectivity
JFC Java Foundation Classes
JMS Java Messaging Service
JVM Java Virtual Machine
LDAP Lightweight Directory Access Protocol

6/11/2007 FINAL

Application Architectural Model A-1

Acronym Definition
NSLDS National Student Loan Database System
OASIS Organization for the Advancement of Structured Information Standards
OLTP Online Transaction Processing
ORM Object Relational Mapping
PBO Performance Based Organization
POJO Plain Old Java Object
RDBMS Relational Database Management System
RMI Remote Method Invocation
SCA Service Component Architecture
SCDL Service Component Definition Language
SDO Service Data Object
SOA Service Oriented Architecture
SQL Structured Query Language
SQLJ SQL-Java
TSV Target State Vision
UDDI Universal Description Discovery and Integration
W3C World Wide Web Consortium
WAS Websphere Application Server
WID WebSphere Integration Developer
WPS WebSphere Process Server

Table A-1: Acronym List

6/11/2007 FINAL

	Table of Contents
	Section 1: Introduction
	1.1 Statement of Purpose / Objectives
	1.2 Intended Audience / Usage
	1.3 Scope
	1.4 Document Organization
	Section 2: Architecture Vision
	2.1 Target State Vision
	2.2 Architectural Principles
	2.3 Architectural Areas
	2.4 Key Concepts
	2.5 Architectural Model Overview
	2.6 Architectural Model Tiers
	2.6.1 Client Tier
	2.6.2 Integration Tier
	2.6.3 Business Tier
	2.6.4 Data Tier

	Section 3: Application Architecture
	3.1 Business Tier
	3.1.1 Service
	3.1.2 Process
	3.1.3 Business Component
	3.1.4 Batch Processing

	3.2 Data Tier
	3.2.1 Data Access

	3.3 Development Tools
	3.4 Adoption
	3.5 Constraints

	Section 4: Architectural Decisions
	1. SQL-Java (SQLJ) is not a recommended technology
	2. Static SQL should not be coded inside of data access components

	Section 5: Glossary and Standards
	Section 6: Use Cases
	6.1 Overview
	6.2 Loan Disbursement Component
	6.2.1 Sequence Diagram
	6.2.2 Transaction Boundaries and Locking
	Appendix A: Acronyms

